Investigators Research

Seeking to expand targeted therapy for lung cancer, Dr. Alice Berger, a recipient of a LCFA lung cancer research grant, has also received a NIH MERIT Award.

Seeking to expand targeted therapy for lung cancer, this NIH MERIT Award will support LCFA-Grant recipient, Dr. Alice Berger’s, efforts to target lung cancer-associated gene mutation.

Targeted therapies have transformed outcomes for lung cancer patients. After reduced smoking rates, drugs that take aim at signature alterations in tumor cells are the main reason that the death rate has dropped for people diagnosed with lung cancer. Recently, Fred Hutchinson Cancer Research Center lung cancer researcher Dr. Alice Berger received a National Institutes of Health MERIT Award that will support her efforts to expand targeted therapy for lung cancer to more patients.

Inhibitors of a growth- and survival-promoting protein called epidermal growth factor, or EGFR, are one class of targeted therapy that’s helped improve outcomes patients with non-small cell lung cancer. EGFR protein is found in very high amounts in some people’s lung tumors, and the EGFR gene is often mutated such that the protein it encodes is more sensitive to EGFR inhibitors.

Dr. Alice Berger receives NIH MERIT award for work to expand targeted therapies for lung cancer

“The clinical problem that we’re addressing is that not all lung cancer patients have targeted therapy options,” said Berger, who holds the Innovators Network Endowed Chair. “But those existing therapies, such as EGFR inhibitors, only work in specific, genetically defined groups. There’s a fraction of lung cancers — 30% to 40% — that don’t have those targetable alterations.”

Berger’s MERIT Award will fund seven years of investigations into RIT1, a gene that’s mutated in a subset of non-small cell lung cancer and other tumors, including some leukemias. Her ultimate goal is to extend the power of targeted therapy to more patients with lung cancer.

Expand targeted therapies for lung cancer with RIT1 biomarker

Berger was inspired to seek out new therapeutic targets for lung cancer by the clinical advances seen for therapies that target other lung cancer-associated mutations. She linked several new genes to lung cancer — including mutated RIT1 — while participating in The Cancer Genome Atlas, a joint program between the National Cancer Institute and the National Human Genome Research Institute to molecularly characterize different cancers on a large scale.

Berger found RIT1 mutations in about 2% of non-small cell lung tumors. This may sound like a small number, but it has a big clinical impact.

“Because lung cancer is so prevalent, [that 2%] amounts to tens of thousands of people,” Berger said. Two percent of lung cancer cases translates to 13,000 people per year who likely have lung tumors driven by mutations in RIT1.

Read full article